您当前的位置:
科技成果 >
基于2D?KPCA的极化SAR图像分类方法
基于2D?KPCA的极化SAR图像分类方法
191
2019/11/22
基本信息
-
成果类型
高等院校
-
委托机构
西安电子科技大学
-
成果持有方
西安电子科技大学
-
行业领域
其他电子信息
-
项目名称
基于2D?KPCA的极化SAR图像分类方法
-
知识产权
发明专利
-
成果成熟度
-
项目简介
本发明公开了一种基于2D‑KPCA的极化SAR图像分类方法,主要解决现有无监督极化SAR分类方法分类精度不高的问题。其实现步骤为:对每个像素点进行Freeman分解,提取像素点的三种散射功率;根据获得的散射功率对图像进行划分,得到3种类别;对获得的每一类,将其用2D‑KPCA进行自适应降维分类;最后,对预分类得到的图像用Wishart分类器进行迭代分类,得到最终分类结果。本发明与经典分类方法相比,对极化SAR图像的划分更加严谨,分类效果更佳,计算复杂度相对较小,可用于对极化SAR图像的进行地物分类和目标识别。
-
交易信息
-
意向交易额
面议
-
挂牌时间
2020/11/22
-
委托机构
西安电子科技大学
-
分享至: